Approximations to the Kruskal-katona Theorem
نویسنده
چکیده
Approximations to the Kruskal-Katona theorem are stated and proven. These approximations are weaker than the theorem, but much easier to work with numerically.
منابع مشابه
Shifting shadows: the Kruskal–Katona Theorem
As we have seen, antichains and intersecting families are fundamental to Extremal Set Theory. The two central theorems, Sperner’s Theorem and the Erdős–Ko–Rado Theorem, have inspired decades of research since their discovery, helping establish Extremal Set Theory as a vibrant and rapidly growing area of Discrete Mathematics. One must, then, pay a greater than usual amount of respect to the Krus...
متن کاملLocal Structure: Subgraph Counts II
Proof. This theorem is a corollary of the (much more general) Kruskal-Katona theorem. The Kruskal-Katona theorem has a very hands-on proof, based on iteratively modifying the graph. We will see a linear-algebraic proof. Let A be the n×n adjacency matrix of G (Auv = 1 if vertex u is adjacent to vertex v, and Auv = 0 otherwise). Note that A is symmetric. It turns out that e and t are both fundame...
متن کاملNonexistence of a Kruskal-Katona Type Theorem for Subword Orders
We consider the poset SO(n) of all words over an n{element alphabet ordered by the subword relation. It is known that SO(2) falls into the class of Macaulay posets, i.e. there is a theorem of Kruskal{Katona type for SO(2). As the corresponding linear ordering of the elements of SO(2) the vip{order can be chosen. Daykin introduced the V {order which generalizes the vip{order to the n 2 case. He ...
متن کاملA Kruskal-Katona type theorem for graphs
A bound on consecutive clique numbers of graphs is established. This bound is evaluated and shown to often be much better than the bound of the Kruskal-Katona theorem. A bound on non-consecutive clique numbers is also proven.
متن کاملMinimum Shadows in Uniform Hypergraphs and a Generalization of the Takagi Function
The shadow function is closely related to the Kruskal-Katona Theorem. The Takagi function is a standard example of a nowhere differentiable continuous function. The purpose of this paper is to exhibit a rather surprising relationship between the shadow function and the Takagi function. Using this relationship, one can approximately compute the size of minimum shadows in uniform hypergraphs with...
متن کامل